Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Over the last decade, the use of unmanned aerial vehicles (UAVs) for plant phenotyping and field crop monitoring has significantly evolved and expanded. These technologies have been particularly valuable for monitoring crop growth and health and for managing abiotic and biotic stresses such as drought, fertilization deficiencies, disease, and bioaggressors. This paper provides a comprehensive review of the progress in UAV‐based plant phenotyping, with a focus on the current use and application of drone technology to gain information on plant growth, development, adaptation, and yield. We reviewed over 200 research articles and discuss the best tools and methodologies for different research purposes, the challenges that need to be overcome, and the major research gaps that remain. First, the review offers a critical focus on elucidating the distinct characteristics of UAV platforms, highlighting the diverse sensor technologies employed and shedding light on the nuances of UAV data acquisition and processing methodologies. Second, it presents a comprehensive analysis of the multiple applications of UAVs in field phenotyping, underscoring the transformative potential of integrating machine learning techniques for plant analysis. Third, it delves into the realm of machine learning applications for plant phenotyping, emphasizing its role in enhancing data analysis and interpretation. Furthermore, the paper extensively examines the open issues and research challenges within the domain, addressing the complexities and limitations faced during data acquisition, processing, and interpretation. Finally, it outlines the future trends and emerging technologies in the field of UAV‐based plant phenotyping, paving the way for innovative advancements and methodologies.more » « lessFree, publicly-accessible full text available December 1, 2025
-
The potential of artificial intelligence (AI) and machine learning (ML) in agriculture for improving crop yields and reducing the use of water, fertilizers, and pesticides remains a challenge. The goal of this work was to introduce Hyperfidelis, a geospatial software package that provides a comprehensive workflow that includes imagery visualization, feature extraction, zonal statistics, and modeling of key agricultural traits including chlorophyll content, yield, and leaf area index in a ML framework that can be used to improve food security. The platform combines a user-friendly graphical user interface with cutting-edge machine learning techniques, bridging the gap between plant science, agronomy, remote sensing, and data science without requiring users to possess any coding knowledge. Hyperfidelis offers several data engineering and machine learning algorithms that can be employed without scripting, which will prove essential in the plant science community.more » « less
-
Abstract Delineating accurate flowlines using digital elevation models is a critical step for overland flow modeling. However, extracting surface flowlines from high‐resolution digital elevation models (HRDEMs) can be biased, partly due to the absence of information on the locations of anthropogenic drainage structures (ADS) such as bridges and culverts. Without the ADS, the roads may act as “digital dams” that prevent accurate delineation of flowlines. However, it is unclear what variables for terrain‐based hydrologic modeling can be used to mitigate the effect of “digital dams.” This study assessed the impacts of ADS locations, spatial resolution, depression processing methods, and flow direction algorithms on hydrologic connectivity in an agrarian landscape of Nebraska. The assessment was conducted based on the offset distances between modeled drainage crossings and actual ADS on the road. Results suggested that: (a) stream burning in combination with the D8 or D‐Infinity flow direction algorithm is the best option for modeling surface flowlines from HRDEMs in an agrarian landscape; (b) increasing the HRDEM resolution was found significant for facilitating accurate drainage crossing near ADS locations; and (c) D8 and D‐Infinity flow direction algorithms resulted in similar patterns of drainage crossing at ADS locations. This research is expected to result in improved parameter settings for HRDEMs‐based hydrologic modeling.more » « less
An official website of the United States government
